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Chapter 1
User Interface Design

Moritz Stefaner, Sébastian Ferré, Saverio Perugini, Jonathan Koren and Yi Zhang

As detailed in Chapter ??, system implementations for dynamic taxonomies and
faceted search allow a wide range of query possibilities on the data. Only when
these are made accessible by appropriate user interfaces, the resulting applications
can support a variety of search, browsing and analysis tasks.

User interface design in this area is confronted with specific challenges. This
chapter presents an overview of both established and novel principles and solutions.
Based on a definition of core principles (see Section 1.1) and challenges (see Section
1.2), we define a taxonomy of navigation modes observed in existing applications
(see Section 1.3). On that basis, design patterns for enabling these navigation modes
in user interfaces (see Section 1.4) as well as extensions and related approaches (see
Section 1.5) are discussed. The chapter closes with an approach to personalizing
faceted search (see Section 1.6).
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1.1 Principles

Extending traditional models of Information Retrieval, search for digital resources
has lately been widely recognized as multi–step processes [66, 58, 9, 37]. To follow
the terminology introduced in [37], a search usually involves an initial constraint
definition, followed by an orienteering and refinement phase based on first inspec-
tions of the result, and finished with a closer examination of individual results in the
so–called endgame.

In this context, the exploration of dynamic taxonomies [70] with facet browsers
is often seen as a most promising candidates for ”rich exploration of a domain across
a variety of sources from a user-determined perspective” [49]. These make different
aspects of the underlying data accessible in parallel. Selecting one of the values, and
thus filtering the result set, restricts the available metadata values only to those oc-
curring in the results. Consequently, the user is visually guided through an iterative
process of query refinement and expansion, never encountering situations with zero
results.

Applications for faceted search and dynamic taxonomies offer the following key
features to support a wide range of search and browsing tasks:

• Unrestricted query formulation over multi–dimensional classification
Facet browsing applications impose no restrictions, in which order, or in which
granularity filters are applied on a result set. Filters stem from various, orthog-
onal dimensions that can be combined by Boolean operators. This allows the
formulation of complex queries, such as “All documents created before date A,
related to topic B, and of file type C or D”. The equal treatment of multiple di-
mensions differs from, e.g. typical web site structures or file systems, where a
single taxonomy is the pre–dominant organization principle, and other metadata
are only supplements for sorting or filtering.

• Poka Yoke: No more Empty Result Sets
One of the core principles of dynamic taxonomies to restrict the available filtering
options in the given focus to only those, which will lead to a non–empty result set.
Hence, the user can never run into a situation with zero results. This is opposed to
the process in a typical advanced search situation, where first a complex boolean
query is constructed, which is then evaluated on demand (see e.g. Figure 1.1).
That, however, can result in empty result sets, often without further indication,
which part of the query could be relaxed in order to retrieve some results. The
exclusion of potentially frustrating situations by design is often referred to as
Poka–Yoke principle1.

• Orienteering and Domain Understanding
It is a common pattern to visualize the number of occurrences of a concept in
the given focus. The simplest option is to provide it in brackets after the concept
label (e.g. “Europe (5)”). Advanced techniques include the application of visual
indicators, such as bar height or small bar charts (see Section 1.4.7).

1 see e.g. http://en.wikipedia.org/wiki/Poka-yoke
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Fig. 1.1 The advanced search interface for the Oakville Public library at
http://opl.bibliocommons.com/search

This provides valuable information scent [64], i.e. “a user’s (imperfect) percep-
tion of the value, cost, or access path of information sources obtained from prox-
imal cues” [89]). Orienteering, or “directed situated navigation” [82] is the pro-
cess of reaching a goal through a series of small actions, supported by continu-
ous evaluation of the respective focus. In this context, knowing beforehand, how
many resources to expect after adding a concept as a filter, can be a valuable
indicator of the utility of the filtering action. Additionally, this principle can be
extended in order to foster domain understanding by learning about characteristic
metadata distributions (see Section 1.4.7);

1.2 Challenges

The prototypical facet browsing application has at least two main interface areas:
one for presenting facets and their values, one for displaying the result set. Addi-
tional components might include a detail view for selected resources and a bread-
crumb strip for filter summary and selection history navigation (see Section 1.4.5).
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Based on this basic setup, a number of dimensions can vary in the system and
user interface design, and need to be carefully decided upon:

• Which is the data type of the different facets – nominal, hierarchical, ordinal, real
valued?

• How are facet values presented to the user? Are all facets and values visible, or
only a selection?

• Can the user select multiple values per facet? If so, does this result in conjunctive
or disjunctive queries?

Based on these fundamental considerations in setting up a faceted navigation
scheme, and designing an appropriate interface, the following recurring challenges
in designing these systems will have to be tackled [34, 35, 54]:

• Boolean query logic A selection of single concepts from different facets is usu-
ally understood as conjunction (AND-query). If, however, multiple values within
one facet are selectable (for instance, “red” and “green” from the “color” facet),
depending on context and data set, either a conjunctive (“red” AND “green”) or
a disjunctive (“red” OR “green”) interpretation are conceivable. If an application
only uses one of these selection modes, this needs to be communicated to the
user; if both are possible, separate controls for both modes will be needed (see
Section 1.4.1).

• Cluttered interfaces The paradigm of making all filter options available in par-
allel naturally leads to the challenge of having to fit many controls and text fields
on the user screen. Hence, clear visual structure and hierarchy as well as strate-
gies to reduce visual clutter are vital. If a full exposure of all facets is not possible
due to size constraints, strategies and user controls for showing and hiding, or ex-
panding and collapsing facets will have to be integrated (see Sections 1.4.2 and
1.4.3).

• Incorporating keyword search A free–form keyword field in order to search
for arbitrary terms in addition to the pre–defined classification scheme is a “key
component to successful faceted search interfaces” [34]. One source of confusion
can be the question, if the search field will act as a plain text filter (e.g. searching
over titles and decriptions of the resources) or if it will also match classification
terms. A third conceivable option is a “search within the results”, which just
filters the result display, but does not act as a full-fledged facet. In either case,
the relation of the free-form search to the rest of the filters has to be signalized
clearly in order to avoid misconceptions (see Section 1.4.4).

• Change blindness Change blindness is a well–known psychological phenomenon
[65]: a person viewing a visual scene apparently fails to detect large changes in
the scene, if the change in the scene coincides with some visual disruption such
as a saccade (eye movement) or a brief obscuration of the observed scene or im-
age. This situation often occurs in web applications, where the web page briefly
flashes after actions demanding a new server request. In this context, animated
transitions can facilitate perception of changes in user interface design [39, 83,
p. 84]. Perception of change is especially important for facet browsing, as the
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sudden disappearance of list items after a click can be a source for misconcep-
tions and confusion. Besides animation, clear marking of the current focus and
the resulting effects are recommended (see Section 1.4.6).

1.3 Navigation Modes

As a basis for comparing user interface design patterns in the next section, this
section defines and illustrates different navigation modes, that enable the user to
navigate the available information space by consecutively applying operators on the
query.

Given an infobase over a taxonomy (T,≤) of concepts, a query is a Boolean com-
bination of concepts. We recall the extension of such a query can be computed from
the extensions of concepts by applying set operations: intersection for conjunction
(and), union for disjunction (or), and complement for negation (not).

From this perspective, browsing an infobase consists in navigating from query to
query. This is more general than defining browsing as navigating from sets of objects
to sets of objects, because every query determines a set of objects, its extension, and
not all navigation modes can be defined as a function from sets of objects to sets of
objects. The queries are constructed by following navigation links or using interface
controls. Most navigation links are provided by dynamic taxonomies, which also
summarize the extension of the current query.

Based on an analysis of existing applications, we can distinguish the following
navigation modes:

• zoom-in makes the query more specific,
• zoom-out makes it more general,
• shift replaces a part of the query by a related concept,
• pivot replaces the whole query by a related concept,
• slice-and-dice allows the disjunctive selection of multiple concepts within a

facet,
• range selection offers the options to specify query intervals within ordinal or real

value facets.

The change from a query to another query, and hence, from a focus to another
focus, is defined as a navigation link. A navigation link is decomposed into a se-
lection and a navigation mode. This means that a same selection can be used in
different ways to reach different foci. In the simple case, a selection is a concept
in the dynamic taxonomy of the current focus. In the general case, a selection is
the disjunction of the concepts that are selected in the dynamic taxonomy (e.g.,
France or Germany or Italy). Controls in the interface can be activated
to apply modifiers on such selections: adding negation (e.g., not (Animal or
Plant) from the selection of Animal and Plant), replacing equalities by in-
equalities (e.g., date >= 2002 from the selection of date = 2002). Given
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those selections, the above navigation modes can be reduced to only two primitive
navigation modes, zoom and pivot:

• zoom-in is a zoom on a selection whose extension contains some objects of the
focus, but not all,

• zoom-out is a zoom on a selection whose extension contains all objects of the
focus,

• shift is a combination of zoom-in and zoom-out,
• pivot is a basic mode,
• slice-and-dice is a zoom on a selection with disjunction,
• range selection is a zoom on a selection with inequalities.

An additional navigation mode is querying-by-examples, which defines the query
from the selection of a set of objects, the examples.

The definitions of navigation modes rely on the fact that queries can be put in con-
junctive normal form, i.e. conjunctive sets of simpler queries. For instance, France
and not date <= 2000 and (Building or Landscape) is equiva-
lent to {France, not date <= 2000, Building or Landscape}.

In the following, these interaction modes are illustrated with an example scenario
using Camelis2, a system for browsing a personal photo collection spanning the
period 1999-2007. This collection contains 5,820 photos, which are described by
date, location, event, type, visible persons and objects, and EXIF descriptors (e.g.,
time, flash, orientation).

Figure 1.2 shows a screenshot of Camelis. The current query is at the top. The
extension of this query, i.e., the current focus, is at the right, where each object is
represented by a thumbnail or a text snippet depending on its type. The dynamic
taxonomy is at the left, in the form of concept trees whose nodes are expanded on
demand. The number at the left of each concept represent its count in the current
focus, and the font scale is logarithmically proportional to this count. At the top
of the dynamic taxonomy, there are check and radio buttons to modify the current
selection (insertion of negation and inequalities), and two buttons for applying the
two primitive navigation modes (zoom and pivot).

1.3.1 Zoom-in

First, suppose some user, say Lisa, wants to find some photos from a trip in Aus-
tralia at the conference ICFCA’04. She first expands the concept Location, and
finds she has photos from Europe (5346), Africa (162), and Australia (148). After
selecting the concept Australia3:

2 The version used here is 1.4, and can be downloaded at http://www.irisa.fr/LIS/ferre/camelis/.
3 There are French words in the screenshot as it is a personal photo collection, but english transla-
tions are used in the text for better consistency.
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Fig. 1.2 The graphical interface of CAMELIS.

• the query becomes Australia,
• the extension displays 12 photos (out of 148),
• the concept Australia has now maximal font scale because all photos in the

extension belong to it, and it is automatically expanded to show sub-locations of
Australia (Lisa finds that she has been mainly in Sydney (105), and in the Blue
Mountains (18)),

• the concepts Europe and Africa are no longer visible, because they are no
longer relevant, i.e., count = 0.

Now she expands the concept Type and sees there are different types of photos:
buildings (29), animals (34), and plants (6). She becomes interested in Australian
organisms, so she selects both Animal and Plant, which leads her to the refined
query Australia and (Animal or Plant), whose extension contains 40
photos. One of these photos is a portrait, which Lisa does not want, so she se-
lects the negation of Portrait. This leads her to the new query Australia
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and (Animal or Plant) and not Portrait (39 photos). By expand-
ing more concepts, she discovers that these photos were taken in February and
March 2004, mainly in Sydney and at the Feather Dale Park, and that 5 photos
of three different species of marsupials are present: kangaroo, koala, wallaby.

Figure 1.2 shows the interface obtained after the previous navigation opera-
tions. At this stage, Lisa can either browse the 39 photos in CAMELIS, or launch
a slideshow in an external application.

These three navigation steps lead to local views with increasingly more precise
queries, and hence increasingly smaller extensions. This is called zoom-in naviga-
tion, because it corresponds to moving towards smaller extensions. Its principle is
to specialize the current query q by the selection x. A simple definition of the re-
sulting query would be q and x, but this would entail redundancy in queries: e.g.,
Australia and Sydney which is equivalent to Sydney because Sydney is
subsumed by Australia in the taxonomy. A better definition is to replace by x
every part of the query that subsumes x:

q ; (q\{y ∈ q | x ≤ y})∪{x}= Min≤(q∪{x}).

The extension of the new query is extension(q)∩ extension(x). Therefore, in case
the extension of x contains the extension of the query, the new query has the same
extension as the query q. So, we restrict zoom-in to selections x such that

extension(q)∩ extension(x) 6= extension(q),

i.e., to selections whose extension contains some of the objects of the focus, but not
all.

1.3.2 Zoom-Out

During navigation, the user may want to remove or generalize concepts in the query
so as to reach larger extensions: this is the zoom-out navigation mode. For instance,
Lisa realises she needs more photos of animals and plants. The back button can
be used to retract the previous refinement. Hence if she wants to remove the first
refinement Australia, she needs to move three steps backwards, and then re-
select the last two refinements. She could also edit the query by hand, but users
usually prefer to navigate rather than to edit queries [33].

Besides, selections whose extension contains all objects in the focus, i.e.
extension(q)⊆ extension(x), cannot be used for zoom-in. This makes them available
for zoom-out. When such a selection is part of the query, it is removed from the
query:

q ; q\{x}.

For instance, if Lisa selects Australia, the new query is (Animal or Plant)
and not Portrait (282 photos from many locations). When such a selection
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subsumes some query parts, it replaces those parts in the query:

q ; (q\{y ∈ q | y≤ x})∪{x}= Max≤(q∪{x}).

For instance, if she selects Pacific, the new query is (Animal or Plant)
and not Portrait and Pacific. It is now clear how zoom-in and zoom-
out can be reduced to a single primitive navigation mode. When zooming on a se-
lection, the relationship between this selection and the current query determines
whether this is a zoom-in or a zoom-out.

Compared to existing approaches, i.e., a list of removable concepts, our approach
has three advantages: (1) it is integrated into the dynamic taxonomy, (2) it allows
the replacement of a concept by a more general one, and (3) it extends to selections
with disjunction and negation by extending the ordering ≤ to such selections.

1.3.3 Shift

Zoom-in and zoom-out can be combined in two forms of shift navigation modes.
From the previous query Australia and (Animal or Plant) and not
Portrait, Lisa first chooses to zoom-in on the concept Plant, resulting in the
query Australia and not Portrait and Plant (6 photos). This is her
starting point for shift navigation.

At this point, Lisa sees that 1 photo has also the type Landscape, which inter-
ests her. She selects this concept (zoom-in) and, since the result has only 1 photo,
she generalizes it by removing the concept Plant from the query (zoom-out).
Therefore, she has executed a shift from Australian plants (6 photos) to Australian
landscapes (80 photos), replacing in the query the concept Plant by the concept
Landscape. From there, she performs a new shift from the concept Landscape
to the concept Building, resulting in 28 photos of Australian buildings. These
navigation steps are suggested and supported by photos belonging to two concepts,
i.e., by extensional relations [69]. This illustrates the relevance of assigning several
types to photos, which is common in this photo infobase. The same would apply to
persons visible on photos, as a photo can contain several people.

However, the same does not apply to locations, as a photo cannot be taken in
two incomparable locations (e.g., in Australia and in Europe). Nonetheless, it is
still possible to shift between locations, through the taxonomy of locations. Sup-
pose Lisa wants to find building photos from other locations. She first generalizes
Australia by Location in the query (zoom-out), and then browses suggested
locations before selecting Spain (zoom-in). Thus, she has performed a shift from
Australian buildings to Spanish buildings, and find 48 photos (mainly churches
taken in the north-west of Spain in 2003).

The former form of shift is a zoom-in/zoom-out combination, and can be qual-
ified as extensional because it relies on extensional relations in the infobase. The



10 Moritz Stefaner, Sébastian Ferré, Saverio Perugini, Jonathan Koren and Yi Zhang

latter form of shift is a zoom-out/zoom-in combination, and can be qualified as con-
ceptual because it relies on conceptual relations in the taxonomy.

1.3.4 Pivot

The user may not remember a concept she wants to use to refine the query, but she
can find it through another query. For instance, suppose Lisa wants to retrieve the
photos of the building of some town. She does not remember which town it is, but
she remembers that the ICFCA conference took place there in 2004. Therefore, she
can first reach the query event contains "ICFCA" and date = 2004
by zoom-in navigation. The resulting extension shows photos of ICFCA’04, and the
dynamic taxonomy shows relevant information about these photos, such as precise
dates, locations, and so on. By browsing the dynamic taxonomy, she discovers that
Sydney, in Australia, is the location of ICFCA’04. Then, she can make the query
become Sydney, and refine it to the desired query Sydney and Building by
zoom-in. The concept Sydney plays the role of a pivot between the two queries.

Pivot navigation relies on the ability of DTs to answer queries not only by a set
of objects (the extension), but also by a set of concepts (the dynamic taxonomy). In
previous navigation modes, these concepts where added or removed from the query,
whereas here they are used as new queries. Given a query q and a selection x, the
query transformation is defined by

q ; x.

Therefore, pivot navigation is a way to restart a search from the results of a first
search. This kind of navigation has already been applied in collaborative web-
sites [59, 98].

There is an interesting analogy with natural language. Indeed, the query above
can be rephrased as “photos of buildings in the town, where the ICFCA conference
took place in 2004”. The idea of pivot is reflected by the fact that Sydney occurs
in the main sentence as “town”, and in the relative sentence as the relative pro-
noun “where”. The relative pronoun indicates which facet to browse for a pivot:
e.g., “where” indicates a location, “when” indicates a date, and “who” indicates a
person. Iterated pivot navigation then corresponds to nested relative sentences, such
as “photos of buildings in the town, where the ICFCA conference took place in the
year, when I also visited Hinterzarten”. The first pivot to be applied is the year 2004,
and the second pivot is the town Sydney.



1 User Interface Design 11

1.3.5 Slice and Dice

Section 1.3.1 shows how the query (France or Italy) and Building
can be reached by performing a zoom-in successively on France or Italy
and Building, thus selecting French and Italian buildings. The disjunction is
introduced because both concepts France and Italy were selected when the
zoom mode was activated. Now suppose Lisa wants to extend the selection to land-
scapes, while retaining the current selection of locations. She just has to extend
the selection Building to the selection Building or Landscape, and acti-
vate the zoom mode. Because the new selection is more general than the old one,
the zoom is interpreted as a zoom-out. According to the definition of zoom-out
(Section 1.3.2), the new query is (France or Italy) and (Building or
Landscape). Now, Lisa wants to refine the selection to Italy only. To this end,
Lisa unselects France in the selection of locations, and applies the zoom mode.
Because the new selection is more specific than the old one, the zoom is here in-
terpreted as a zoom-in. According to the definition of zoom-in (Section 1.3.1), the
new query is Italy and (Building or Landscape). This short naviga-
tion scenario demonstrates that in a query each facet can be refined and extended
indepently from other facets, simply by applying the zoom mode on the new selec-
tions. In fact, it is not necessary that the different concepts in a selection belong to
the same facet, while this is the most common case.

1.3.6 Range Selection

Range selection is similar to slice-and-dice (Section 1.3.5), except disjunctions of
concepts are replaced by inequalities as selections. This makes sense because an in-
equality date >= 2002 is equivalent to the infinite disjunction date = 2002
or date = 2003 or .... Then, every range is the composition of two in-
equalities. For instance, the date range date in [2002, 2007] is equiva-
lent to date >= 2002 and date <= 2007. Therefore every range can be
reached by two successive zoom-in steps on inequalities: one for the lower bound,
and the other for the upper bound. It is assumed that the user interface allows the
selection of inequalities even if the dynamic taxonomies contains only values (e.g.,
date = 2003).

Starting from date >= 2002 and date <= 2007 and France, the
date range can be refined by zooming on date >= 2003 or date <= 2006
(zoom-in), or extended by zooming on date >= 2000 or date <= 2008
(zoom-out). The upper bound of the range can also be removed altogether by zoom-
ing on date <= 2007 (zoom-out); and similarly for the lower bound. The above
formulas are used to give the logic of the navigation, and to reduce range selection
to basic navigation modes; but a user interface may render it in a more graphical
way, e.g., with the help of a double slider on a scale covering the relevant values.
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q = Australie and not Portrait q = Batiment and Sydney

Fig. 1.3 A screenshot of CAMELIS before and after querying by examples.

1.3.7 Querying by Examples

A query can be determined by the selection of a subset of objects, thus supporting
querying by examples. The idea is to construct the query as a conjunction of all most
specific concepts which are shared by the selected objects O:

q ; Min≤{y ∈ T | O⊆ extension(y)}.

For instance, suppose Lisa starts with Australia and not Portrait. While
browsing photos in the result, she sees interesting photos of buildings (e.g., 2 pho-
tos of the Opera, and 1 photo of the Harbour Bridge), and she would like to find
more. By selecting them she moves to a new query that is the conjunction of the
concepts shared by those 3 photos. As usual with this form of navigation, the re-
sulting query is very specific and she receives no additional photos. At this stage,
Lisa can use zoom-out navigation to generalize the query. Unlike approaches based
on metrics, Lisa can choose which properties of the query should be generalized or
removed [6]. By removing in the query concepts related to date and event, the query
becomes Sydney and Building, and Lisa find 29 photos. Figure 1.3 shows
the three selected photos in the initial query (left side), and the resulting view of
the final query (right side). From there, she can further zoom-out, zoom-in to find
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photos of modern buildings, or shift to find buildings in different countries. Inter-
active query relaxation [38] is similar, except that only one facet is retained in the
generalized query. For instance, starting with the same photos, Lisa could reach the
query Sydney or the query Building, but not Sydney and Building.

A special case of querying by examples is when selecting only one photo. Then
there is only one object in the extent, because there are enough properties to uniquely
characterize each photo, and the query contains all the object properties, which are
more easily read in the dynamic taxonomy. So this is an easy way to access the full
description of any object.

1.4 Design Patterns

This section gives an overview of solutions for solving the issues and challenges
in the user interface design of applications for faceted browsing and dynamic tax-
onomies, with a special focus on how to enable the previously introduced navigation
modes. Where applicable, these are referred to the respective user interface design
patterns from established pattern libraries.

1.4.1 Selection Management

Filter selection and de-selection is of central importance in faceted search. The ba-
sic navigation modes of zoom–in and zoom–out are present in all examined user
interfaces.

If only one concept should be selectable at a time within a facet (thus avoiding the
possible confusion if multiple values are to be connected by AND or OR), traditional
single–select controls such as radio buttons, dropdown list controls or simple links
(in web applications) are advisable. The standard multi-select elements, on the other
hand, are check boxes.

Interfaces that allow only one concept selection per facet support shift navigation
in the easiest manner, since only one click is necessary to replace a selection with
another one from the same facet. If multiple selections are allowed per facet (slice-
and-dice navigation mode), a distinction has to be made between zooming-in, adding
the clicked value to the active filters, and shift, i.e. replacing the previously selected
concepts from the same facet.

For instance, the yelp4 web application provides check buttons for multi-select
facets and simple links for facets with exclusive selection (see Figure 1.4). Alterna-
tives for allowing both modes in a facet would be dedicated controls (e.g. a “jump
to” button), or modifier keys (such as pressing “shift” while clicking).

4 http://http://yelp.com
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Fig. 1.4 Mixing multi–select and single–select facets in the yelp (http://yelp.com) application.

Fig. 1.5 The ContentLandscape application (see 1.5.3) combines bar chart representations with
slider controls for range selection.

For range selection navigation mode, slider controls can allow the specification
of upper and lower bounds on the result set (see for Figures ?? and 1.5).

Additional UI functionality, however, is usually accompanied by additional com-
plexity and visual clutter. Intelligently limiting users’ options can help in allowing
the user to focus on his core tasks without additional burden of rarely used func-
tionality. For example, for a web shop application, it might be sufficient to split
the “price facet” into 3–5 discrete regions from low- over mid-priced to expensive
goods, instead of giving the more fine–grained option to filter from 37 to 82.

Either way, concept de-selection should be as easy as concept selection. Ad-
ditionally, if breadcrumbs or a similar filter summary indicator are present, these
should include the option to clear individual filters as well. Also, buttons for reset-
ting single facets or all filter options can help to zoom–out quickly.

Pivoting is usually supported not directly in the facet panels, but from the de-
tail views for single contents. First established in Web 2.0 applications [59], it has
become a common practice that a metadata value clicked in the content presenta-
tion leads to a new view with the respective value as the only selected concept. The
same holds for Querying by examples, as this action is intrinsically related to re-
source instances, and not to individual facet concepts. Consequently, querying by
example is usually realized with context menus or buttons adjacent to the result list
presentations or detail view.

If the data is only partially tagged, it is advisable to include a “no value assigned”
concept, as for instance, demonstrated in the Exhibit prototype [46] (see Figure 1.6).
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Fig. 1.6 The Exhibit (http://simile.mit.edu/exhibit) user interface signalizes missing concept as-
signments in a facet.

1.4.2 Revealing Hierarchy

For flat facets, i.e. not featuring a hierachical relation between the concepts, simple
list widgets are usually used. List sorting can either be alphabetical, or dynamically
updated by the number of assigned items in the current result set. For navigating
hierarchies, a number of different presentation and navigation options exist, which
are discussed in the following.

1.4.2.1 Explorer Tree

The expandable explorer tree constitutes an established representation for hierar-
chical structures. This principle is, for example, used in the Camelis application
(see Figure 1.2). Given the usually quite limited screen estate, however, the ex-
panded lists often exceed the available facet widget space. This leads to the need for
scrolling, which makes it difficult to orient in the hierarchical structure, especially
if multiple levels are expanded.

1.4.2.2 Zoom and Replace

The Flamenco application5 [93] zooms into selected values, replacing the facet wid-
get content with the level below the selected concept. The path from the root of the
hierarchy to the current level is accessible via breadcrumbs in the header of each
facet widget (see 1.7). This pattern works only for single–select facets, and opti-
mizes for item presentation on one level. Consequently, navigation across the tree is
facilitated.

5 Online demos available at http://flamenco.berkeley.edu/
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Fig. 1.7 Zoom–and–replace and breadcrumbs in the Flamenco application.

1.4.2.3 Collapsible Panels

Fig. 1.8 The ContentLandscape application applies the collapsible panel pattern for zooming into
concepts within a hierarchy.

The ContentLandscape application [79] features compact, hierarchical widgets
based on the accordion pattern6, where each hierarchy level is represented as an in-
dividual accordion level. On concept selection, the respective level is collapsed, and
the subsequent level opened, to allow further drill-down in the hierarchy. Moreover,
opening a level is possible by simply clicking the respective accordion header (see
Figure 1.8).

1.4.2.4 Continuous Zooming

In the FacetZoom prototype7 [23], hierarchical facets are displayed as space-filling
widgets which allow a fast traversal across all levels while simultaneously main-

6 See e.g. http://www.welie.com/patterns/showPattern.php?patternID=accordion
7 Open source version available at http://advancingusability.wordpress.com/2008/03/31/facetzoom-
first-open-source-release/
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Fig. 1.9 The FacetZoom widget combines ideas from zoomable user interfaces (ZUIs) with faceted
search

taining context. It supports both horizontal panning for exploring a whole hierarchy
level, as well as tap-and-center navigation, allowing to dynamically zoom–in on
tree nodes. For selected concepts, the child nodes are displayed on top of the wid-
get. Navigating one level up the tree is supported by a bottom row presentation of
the parent node.

1.4.3 Facet Management

A variety of options to overcome the problem that, often, more facets are avail-
able than can be put on screen at the same time, are discussed in [34] and [35].
The options range from collapsible facet widgets (such as used by, for instance,
Getty images’ faceted navigation interface8) over expandable filter areas (“More...”
button) to dynamically selecting the shown facets based on the existing query (as
demonstrated in the yelp application).

1.4.4 Keyword Search

As noted above, a free–form keyword field in order to search for arbitrary terms
in addition to the defined classification scheme is a “key component to successful

8 http://gettyimages.com
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faceted search interfaces” [34]. This task is especially challenging, since a search
field can either act as a filter on the resources, e.g. searching over titles and decrip-
tions, or if it can also match classification terms. The following sections discuss
further variations within these two options.

1.4.4.1 Keyword Search as Additional Resource Filter

Fig. 1.10 The yelp application automatically selects the presented facets based on the search term.

When search engines are enhanced with faceted search, often, a keyword search
is used to define the initial result set, which can be further refined by concept selec-
tions from facets. For instance, the yelp application (see Figure 1.10) asks for a topic
(e.g. “auto repair”) and a location (e.g. “San Francisco”) to be entered, before enter-
ing the faceted search mode. In this application, displayed facets and concepts are
selected dynamically depending on the type of query, i.e. a search for “auto repair”
will yield different filtering options than one for “chinese restaurant”.

The Flamenco application [93] allows to choose between a full-text search over
all results (overriding other filters) or within the current focus.

Obviously, when integrating keyword search with dynamic taxonomies, there
might be zero hits, due to the unrestricted nature of the input. This violates the
Poka-Yoke principle that we identified as one of the key features of applications in
this domain. One solution could be to check for results after the user submits the
keyword query, and leave the keyword filter in a “tentative” state if no results are
found within the current focus. This would give the user the option to either zoom-
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Fig. 1.11 The Flamenco application allows to choose between a full-text search over all results
(overriding other filters) or within the current focus.

out some other filters, or re-tract the query. In this case, it would be helpful to have
a preview, of how many results could be achieved, if the respective concept would
be removed from the query.

1.4.4.2 Keyword search within facets

In order to avoid having to navigate large hierarchies, even though the target con-
cept is already known by name, direct access to facet items can be achieved with a
keyword search over the concept labels.

For instance, the /facet system [42], provides a keyword search box for each facet
(see Figure 1.12). This interface dynamically suggests matching concept labels after
the user has typed a few characters; only keywords that produce actual results are
suggested. This makes the interaction often faster than manually navigating the tree.
The results are presented in a collapsible tree structure. Additionally, if the target
concept is known, but it is unclear, in which facet it is located, a global search box
executes the described operation over all search boxes in parallel.

A similar approach is described in [8], which is even extended to finding facets
by label, and can thus be applied to very large and heterogenous resource bases.

Fig. 1.12 The /facet system allows to quickly search within the concept labels of a facet
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The ContentLandscape application [79] features a combo box component for
quick access to concepts across all hierarchy levels (see Figure 1.13). It can be
opened by clicking a search button in the facet box. In its initial state, the text field
is empty, and a scrollable, alphabetical list presents all concept labels from that
facet, regardless of depth level. When the user starts typing, this list is dynamically
reduced to terms matching the query.

Fig. 1.13 Quick access to concepts with a combo box in the ContentLandscape application.

1.4.5 Filter Summary and History Navigation

Breadcrumbs can be used to summarize the current selection status in one central
place in the user interface. These usually record the sequence of selection actions
across all facets [34]. Breadcrumb entries should be clickable, leading to a zoom–
out action on the respective concept. The footnote web site combines breadcrumbs
with the option to refine with an additional keyword search (see Figure 1.14).

Fig. 1.14 The footnote web site combines a filter summary with the option to refine with an addi-
tional keyword search
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1.4.6 Animated Transitions

Animated transitions can facilitate awareness of transformations and responses in
user interface design [39, 88]. Perception of change is especially important for facet
browsing, as the sudden disappearance of list items after click can be a source for
misconceptions and confusion. In fact, studies have shown that so–called change
blindness [65] is a common psychological phenomenon: changing details of visual
scenes are often remain unnoticed, if the two states are separated by a short flash, as
it is common, for example, in web applications. The Elastic Lists facet browser [78]
demonstrates how smooth transitions can help in understanding filtering processes9.

1.4.7 Visualizing Proportions

As stated above, one common and useful technique is to exclude concepts with zero
occurrences from the presented filter options, in order to avoid selections with zero
results. For exploratory tasks, it can be useful to additionally see how many items
match each of the respective concepts in the given focus.

Besides support for orienteering (see Section 1.1), analysing metadata distribu-
tion can constitute a valuable information source by itself, e.g. in order to understand
what makes a data set special compared to the whole collection and to generate hy-
pothesis about the underlying reasons.

Fig. 1.15 The RAVE system visualizes metadata value proportions in horizontal bar charts.

The simplest option is to provide this information in brackets after the concept
label (e.g. “Europe (5)”). While this presents an economic and easy solution, the
user is left with the task of processing and understanding these numbers. Visualiza-

9 Interactive demo available at ...
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tion can help to make the relevant information available pre–attentively and in an
intuitive manner.

For instance, the RAVE system [96] visualizes metadata proportions in horizon-
tal bar charts, below the concept label. While the graphic layout could be improved
in order to introduce less visual clutter, the prototype shows how additional informa-
tion about local and global weights can be integrated without loss of screen estate.

Fig. 1.16 Elastic lists indicate the number of matched resources in scaling list entry height. Addi-
tionally, unusually high proportions (compared to the global distribution) are indicated by bright-
ness of the list entries.

In the Elastic Lists prototype [78], the height of a list item indicates the relative
proportion of items associated with the respective metadata value in the given con-
text. Additionally, a brighter color indicates that the current weight is significantly
higher when compared to the global distribution. List entries with a weight of zero
(i.e. not occurring in the current context) are collapsed to a minimal visible height.

The Visgets system [27] extends this principle by featuring a whole number of
visualizations, with a weighted, coordinated brushing scheme (see Figure 1.17).
The visualization elements include bar charts with range sliders, a map, and a tag
cloud10. Visual representations for concepts and metadata values are scaled accord-
ing to their global proportion. The coloring indicates, on the one hand, presence or
absence of the respective value in the current result set. Additionally, on rollover
on any concept or metadata value, more strongly associated items receive a higher
opacity (weighted brushing).

1.5 Extensions and Related Approaches

Lately, the described principle of faceted search and dynamic taxonomies are being
extended and translated to other types of search and browsing applications. This

10 see http://www.welie.com/patterns/showPattern.php?patternID=tag-cloud
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Fig. 1.17 Weighted, cordinated brushing in the visgets system.

section provides some brief pointers to current research in this area, and introduces
the novel principle of out-of-turn interaction.

1.5.1 FaThumb

FaThumb [50] enables faceted search on mobile devices (see Figure 1.18). The filter
area is grouped in nine zones, corresponding to the nine digit keys on mobile phones.
The middle zone serves as a spatial overview during navigation. The surrounding
eight zones allow the user to select hierarchy branches and repeatedly zoom in on
subtrees. The left short shortcut key adds the currently selected concept to the query,
the right one allows to quickly jump back to the top.

1.5.2 Browsing Related Entities

Usually, the type of resource entity to be browsed (e.g. book, car, web page...) re-
mains fixed in a faceted browsing application. In [51], a conceptual prototype of a
browsing application named Humboldt is described, which allows to switch the type
of displayed entities based on relations to the current result set. In principle, the ap-
plication allows to treat any facet value space as a search result list, and arrange the
interface accordingly. To cite an example given in [51], ”a user who filters films on
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Fig. 1.18 Faceted search for small screens in the FaThumb prototype.

Fig. 1.19 The parallax application allows to jump to related sets of items from a faceted browsing
situation.
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certain directors and then pivots11 on actors will see all actors in the result list, who
are related to any film in the previous result list.”

This principle has also been demonstrated in the parallax application based on the
freebase12 public database [45] (see Figure 1.19). It allows, for example, to query
the data set for architects, then filter down to all modern architects: a classical zoom–
in. The novel principle, however, is that the user can explore related collections, like
the buildings they designed, their birth places etc. in the same facet browsing space.
The jump to these new results is offered in a ”connections” box on the top right of
the interface. History navigation for these “related set” browsing steps is provided
by a breadcrumb control.

1.5.3 Resource Analytics

Understanding resource production, use and distribution across departments, re-
gions, and product groups is one of the core challenges of knowledge management
in the enterprise [68]. ’What are the most downloaded contents?’, ’do the presenta-
tion materials for a given product cover all important sales regions?’, ’what parts of
my resource collection are growing? and which are declining?’ are typical questions
in this area.

The ContentLandscape application13 [79] is part of the BizSphere14 application
suite and uses faceted browsing and search in order to facilitate the understanding of
resource distributions. In addition to traditional result set views, a dashboard view
presents statistical measures for the resource set in the current selection (see Fig-
ure 1.20). It features visualizations of trend measures such as the quarter to quarter
growth, a detailed age histogram, and the rating distribution. Moreover, the cover-
age of the selected resource set with respect to the three main taxonomies ’region’,
’offering’ and ’resource type’ is presented in squarified treemaps [16, 76]. At first
glance, this visual display allows to see, for instance, if all product groups are repre-
sented by resources in the current selection, and in which specificity. This statistical
analysis can be further decomposed into in several matrix views. Inspired by OLAP
approaches [20], these allow the user to split the result set according to up to three
dimensions, and compare the statistical measures for the resulting sub-collections
in parallel.

11 Note that the semantics of pivoting in this case differs from the definition introduced in section
1.3.4.
12 http://freebase.com
13 http://moritz.stefaner.eu/projects/content-landscape
14 http://bizsphere.com
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Fig. 1.20 The dashboard view of the ContentLandscape application

1.5.4 Out-of-turn Interaction

Out-of-turn interaction [61] is a technique for navigating hierarchical websites
which augments traditional browsing by empowering the user to supply a hyperlink
label which is presented beyond the current webpage (hence out-of-turn) to initiate a
search over the site’s hierarchical schema. When the system receives an out-of-turn
input, it removes all paths through the site which do not contain a hyperlink labeled
with the input and removes the hyperlink labeled with the input from the remaining
paths. Fig. ?? illustrates how a sample hierarchy with a structure similar to that of
PVS would be pruned based on supplying ‘Republican’ out-of-turn. Notice that all
paths leading to the webpages of Democratic politicians (nodes 20, 21, 24, 25, 26,
27, 30, 31, 32, and 33) have been removed. In addition, the hyperlinks labeled ‘Re-
publican’ in the remaining paths (those leading to nodes 22, 23, 28, 29, 34, 35, 36,
and 37) have been removed.

Fig. 1.21 illustrates an out-of-turn interaction through a browser toolbar we call
Extempore (as it permits the user to supply terms extemporaneously). Here the user
supplies ‘Republican’ out-of-turn (see Fig. 1.21, top). This causes some of the hy-
perlinks presented on the root page (e.g., Hawaii), those which do not lead to the
webpages of Republican congresspeople, to be pruned out (see Fig. 1.21, bottom).
When used in conjunction with traditional browsing, the unsolicited reporting [5] in-
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Fig. 1.21 Illustration of an out-of-turn interaction with PVS through the Extempore toolbar.

volved in supplying an out-of-turn input supports a simple form of mixed-initiative
interaction [63] and can be viewed as an approach to integrating querying and
browsing in information hierarchies [14].

In sites where each level of the hierarchy corresponds to a facet of information
assessment, such as PVS, out-of-turn interaction permits the user to explore the
facets in any order without the designer enumerating all possible paths of navigation.
In hierarchies where each level does not correspond to a facet, such as Yahoo! and
the Open Directory Project (ODP) at dmoz.org, out-of-turn interaction behaves more
as a pruning operator and reveals to the user the portions of the taxonomy pertaining
to their query. For example, ODP contains 16 top-level categories and a user starting
from the homepage would be hard-pressed to know that only four (Home, Shopping,
Business, and Regional) contain links to information about ‘ice cream makers.’ An
out-of-turn interaction reveals these categories. In fact, the search feature provided
in ODP is similar to out-of-turn interaction with the exception that ODP flattens
the hierarchical structure in response to a query (see Fig. 1.22) whereas out-of-turn
interaction preserves the hierarchical nature in order to retain context.
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↓

Fig. 1.22 (top) A query for ‘ice cream makers’ in the Open Directory Project and (bottom) its
result as a flat list.
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Notice that with the interpretation of out-of-turn interaction presented here, an
unexpanded query will yield the same result as its expanded version and therefore
query expansion here is simply a feedback mechanism to expose dependencies, un-
like its use in traditional IR.

Fig. 1.23 Facility for automobile-make lookup by model in the online Kelley Blue Book.

There are other means of exposing dependencies underlying information hier-
archies during information-seeking. For example, the Kelley Blue Book (KBB)
online at kbb.com provides a facility for automobile-make lookup by model (see
under heading titled ‘Helpful Information’ in Fig. 1.23) since FDs of the form
‘model → make’ are implicit in the domain of automobiles. When browsing new
cars in KBB, users are first asked to make a selection for automobile make (see
under heading titled ‘SELECT A MAKE AND MODEL’ in Fig. 1.23). The lookup
facility allows the user to search for the make of an automobile based on the model
so that they can proceed with the information-gathering dialog on the left side of the
window in Fig. 1.23. A more sophisticated example of support for dependency ex-
ploration is Sony’s Advisor facility available through sonystyle.com when browsing
products such as digital cameras and camcorders.

1.6 Personalizing Faceted Search (Koren, Zhang)

1.6.1 Introduction

One of the primary ways users manipulate a faceted search interface is by refining
their current query by clicking a facet-value pair from a list of possible system sug-
gestions. How effective users are at finding their documents of interest is related to
the quality of the query refinements suggestions. Traditionally, ad hoc approaches
have been used to determine which values for a facet should be presented to the user
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during interaction. One common approach is to simply display all available values
for a facet. While this may be effective when the number of available values is small,
this approach may overwhelm users when the number too large [77]. Another ap-
proach is to display only the first few alphabetically ordered values [36]. While this
approach avoids overwhelming the user with many values, it arbitrarily biases the
interface towards values earlier in the alphabet. A better method is to display the
most frequent values for a facet. However this method is not user centric since the
most frequent values are endemic to the corpus instead of the users.

This chapter focuses on a user centric approach to determine which values are
most useful to users: Personalizing Faceted Search. Personalization allows the sys-
tem to present the facet-value pairs that can help the user quickly find the docu-
ment(s) that the current user is most interested. In order to determine which facet-
values are most useful to a particular user, we analyze the distribution of values in
corpus, and user’s feedback on documents while using the system. With this knowl-
edge, we can tailor the faceted search interfaces to individual users.

1.6.2 Related Work: Personalized Search and Filtering

The idea of personalizing search is not a new idea in the information retrieval com-
munity [43, 21, 12, 47, 29, 17, 74, 4, 85, 90, 81]. Dumais, Cutrell, Sarin and Horvitz
automatically generate queries based on keywords within an email being read or
composed by a user [28]. To improve retrieval results, Bharat treats the previous
information requests from the user as the context of the current query [12], whereas
Shen, Tan & Zhai use the preceding queries and clicked-document summaries as the
context of the current query [74] . On the other hand, researchers have developed
personal information integration environments that store a particular individual’s
heterogeneous information and the context of the information, providing content
and context-based retrieval [2, 26, 31]. Rui et al. [57] explored biasing cosine simi-
larity methods based on user feedback in order to retrieve more documents that were
similar to a user’s interests. Abrol et al. personalized semi-structured search inter-
faces by using a user’s transactional feedback from his/her queries [1]. Shen et al.
used implicit user feedback, such as query refinement and click logs, to customize a
KL-divergence model for document retrieval [75]. Personal WebWatcher passively
observed a user’s browsing behavior in order to highlight links that matched the
inferred task [60].

On the other hand, personalization is a heavily studied problem in the informa-
tion filtering research community and the research can be traced back to 1970s. For
example, content-based adaptive filtering studies the scenario in which a recom-
mendation system monitors a document stream and pushes documents that match
a user profile to the corresponding user. The user may read the delivered docu-
ments and provide explicit relevance feedback, which the filtering system then uses
to update the user’s profile using relevance feedback retrieval models or machine
learning algorithms (e.g. Boolean models, vector space models, traditional proba-
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bilistic models [67], inference networks [18], language models [22], Support Vector
Machines, K-nearest neighbors clustering, neural networks, logistic regression, or
Winnow [56, 92]). Collaborative filtering goes beyond merely using document
content to recommend items to a user by leveraging information from other users
with similar tastes and preferences. Memory-based heuristics and model-based ap-
proaches have been used [52, 25, 15, 48, 44, 40, 10, 3].

1.6.3 Personalization based on Collaborative Filtering

Faceted search interfaces share three characteristics. The interfaces present a num-
ber of facets along with a selection of their associated values, any previous search
results, and the current query15. By choosing from the suggested values of these
facets, a user can interactively refine the query. The interface also provides a mech-
anism to remove previously chosen facets, thus widening the current search space.

In personalized faceted search, the key problem is to rank facet-value pairs ac-
cording to how helpful they are for a particular user to use for query refinement.
Complicating this task is the fact that rarely, if ever, does the system have access to
user ratings of on individual facet-value pairs. Instead, most of the existing faceted
search systems, such as Amazon.com and Netflix.com, are designed so that users
rate each individual document. This design trade-off is reasonable since the rele-
vance/rating of a facet-value pair is not a well defined problem and thus hard for the
user to provide. Besides, a user usually has seen a overwhelming number of indi-
vidual facet-value pairs, and users rarely experience any particular facet-value pair
in isolation. By rating the whole document, a user express a preference over many
facet-value pairs simultaneously, especially for facet-value pairs that they may only
be tangentially aware of.

Personalized faceted search is a comparatively new field that has not been well
studied. Fortunately, we can develop personalized faceted search interface based on
the earlier work in personalized search. For example, we can first use traditional col-
laborative filtering techniques to predict a user’s ratings on unseen documents, and
then propagate information from ratings on whole documents to individual facet-
value pairs.

The basic assumption of collaborative filtering is that users that have similar pref-
erences on some documents may also have similar preferences on other documents.
Therefore the algorithm provides recommendations for a user based on the opinions
of other like-minded users.

In collaborative filtering, users ratings over items are represented as a matrix A,
where Au,i is user u’s rating on item i. Many collaborative filtering techniques have
been proposed to predict the missing cells in the matrix [52, 25, 15, 48, 44, 40, 10, 3].

In this chapter, we first introduce two basic collaborative filtering techniques,
then discuss how to go from document ratings to facet-value pair ranking.

15 For an interactive faceted search interface, the current query is the facet-value pairs the user has
selected so far.
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1.6.4 Item-item similarity or user-user similarity

There are two very commonly used collaborative filtering approaches: the first one
compares each user to the other users, while the second one compares the items
to each other. These are called user-user similarity and item-item similarity re-
spectively. We describe Konstan et al.’s Pearson’s correlation based user-user al-
gorithm [52] below.

For each user, we calculate the average rating assigned by that user Āu to all rated
items. Each unknown rating is then estimated as the user’s average rating, perturbed
by sum of the difference between every other user’s assigned rating and his/her
average rating, weighted by the correlation among the commonly rated items of the
current user to every other user.

Formally, this is stated:

Au,i = Āu +
k

∑
v=1

wu,v(Av,i− Āv)
|wu,v|

(1.1)

where k is the number of users that have at least one rated item in common with user
u, and wu,v is the Pearson’s correlation between user u’s ratings and user v’s ratings.
Recall that Pearson’s correlation is:

wu,v =
∑

m
j=1((Av, j − Āv)(Au, j − Āu))

σvσu

=
∑

m
j=1((Av, j − Āv)(Au, j − Āu))√

(∑m
j=1(Av, j − Āv)2)(∑m

j=1(Au, j − Āu)2)

(1.2)

where σu and σv are the standard deviations in user u’s and user v’s ratings, and m
is the number items that user u and user v have both rated.

Herlocker et al. [41] examined using other similarity methods such as Spear-
man’s correlation, information entropy, mean-squared difference, and found they
performed similar to Pearson’s correlation.

In its simplest form, the item-item algorithm is similar to the user-user algorithm,
only with the rows and columns exchanged. Item-item similarity can be extended to
take into account the content of the items being rated. For example, Sawar et al. [71]
estimated ratings by summing the ratings of the the other rated items, weighted by
the cosine similarity of the rated and unrated plain text documents.

1.6.5 Singular Value Decomposition

One problem with with the collaborative filtering techniques discussed in sec-
tion 1.6.4 is that the user-item matrix can become very sparse as the number of
items and users increase. This sparseness can sometimes lead to poor predictions.
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By creating a low dimensional approximation of the rating matrix, it is possibly to
improve the accuracy of the predicted ratings. One such technique that has been
used successfully in the personalization and collaborative filtering domains is sin-
gular value decomposition (SVD) [73, 72, 30, 62, 11].

SVD, also known as latent semantic indexing (LSI) in the information retrieval
community [24], works by combining rows and columns that are found to be strong
correspondence. These correspondences are called latent factors.

Applying SVD to collaborative filtering task, we factor the m×n user-item ma-
trix A into three smaller matrices U , Σ , and V . U is m× h, Σ is a h× k diagonal
matrix, and V is n×h matrix.

A'UΣV T (1.3)

The values along the main diagonal of Σ are the biggest h singular values of A in
decreasing order. Each row of U and V contain orthogonal singular vectors. The
vectors in U are known as the left singular vectors, while the vectors in V are the
right singular vectors. Since we want a low dimensional approximation of the rating
matrix, only the first h < rank(A) singular values and singular vectors are used.

Typically, A is approximated as the product of two matrices:

A≈ (U(
√

Σ)T )((
√

Σ)TV ) (1.4)

We can view the first matrix as the hidden representation of the users, and the
second matrix as the hidden representation of the items. With this approxima-
tion, the predicted rating for a user u on item i can be calculated as Au,i = Āu +
(U(

√
Σ)T )T

u ((
√

Σ)TV )i.

1.6.5.1 Recommending facet-value pairs

There are many methods to propagate information from ratings on whole documents
to individual facet-value pairs. One method is to assign facet-value pair xi a score
based on the expected rating a user u gives to a document d containing that facet-
value pair:

f (u,xi) = E[Ru(d)|xi ∈ d ∈ D]

= ∑
d∈D

Ru(d)P(xi|d)

'
∑d∈D Ru(d)I{xi∈d}

∑d∈D I{xi∈d}

(1.5)

Where D is the set of documents selected by the current query, Ru(d) is the rating
of user u on document d, and I is the indicator function.

One simple way to suggest facet-value pairs for query refinement is presenting
the top scoring facet-value pairs that are contained in the documents selected by the
current query. While this is an attractive option, this approach can suffer when the
top scoring values are redundant, where an extreme case if that if they cö-occur in
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the same documents. One elegant solution proposed by Chen and Karger [19] is to
condition each suggestion on the assumption that none of the previous suggestions
are relevant to the current query. For our purposes, this means that the k + 1th sug-
gestion is the top scoring value that is not contained in a document that contains any
of the previous k suggested values.

To determine the order that the facets are presented to each user, a simple ap-
proach is using the average score of the suggested values for each facet for the null
query and then fix order of the facets throughout the lifetime of the user interaction
session(s).

1.6.6 Personalization using Content Based Filtering

In this section we provide a complementary approach to personalization based on
the content of the documents. Motivated by relevance feedback retrieval models and
content based adaptive filtering techniques, we focus on two statistical models: a
model of the documents being searched, and a model of a user.

1.6.6.1 Document Model

While every faceted document has a set of facets associated with it, the number of
values that each facet has in a particular document can vary a lot. We model this
by expressing the number of values each facet has in a random document as a draw
from an multivariate Normal distribution:

〈n1, ...,nK〉 ∼MV N(−→µ ,Σ) (1.6)

where nk contains the number of values for facet k in the document, −→µ is a K
dimensional vector containing the mean number values for each facet, and Σ is the
corresponding K×K covariance matrix.

Each facet in a document has a certain semantic meaning that dictates the type
and thus the probability distribution of the values that can be associated with it. Five
common types of facets are: nominal, ordinal, interval, ratio, and free-text. Nominal
facets take discrete and orderless values. The values to this type of facet can be
modeled as draws from a multivariate Bernoulli distribution. Ordinal facets also
take discrete values, but there is an implicit ordering to these values. An example
of this would be field that identified the sensitivity of a document as being for “full
release”,“limited release”, or “secret”. Interval facets can take any value on a defined
range, as long as the range excludes an explicit zero point. Ratio typed facets on the
other hand can take zero as a value. Values for ordinal, interval, and ratio facets
can be modeled as draws from a normal distribution. Free-text facets allow arbitrary
text to be associated with documents. Traditional statistical information retrieval
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techniques represent each word in unstructured text as a draw from a multinomial
distribution.

After identifying the type and the proper probability distribution over the values
associated with facet, the probability of a document existing is simply the product
of the probability of each desired value occurring for the appropriate facet.

Table 1.1 Facet Types and Distributions
Facet Type Values Example Distribution Prior

Nominal Unique Tokens Director Multivariate Multivariate
Bernoulli Gamma

Ordinal Repeatable Critic’s Rating Normal Normal
Ordered Tokens (e.g. A, B, C, ...)

Interval Repeatable Numbers Year of Release Normal Normal
Excluding Zero

Ratio Repeatable Numbers Running Time Normal Normal
Including Zero

Free-Text Repeatable Tokens Synopsis Multinomial Dirichlet

1.6.6.2 User Model

Instead of estimating a user rating for a document, in this approach we estimate the
probability of a document being relevant to a particular user. Similarly, instead of
calculating a suitability score for a facet-value pair to a user, we estimate the prob-
ability of a particular facet-value pair appearing in a document relevant to a user.
For simplicity and without lose of generality, we assume that a document is either
relevant or nonrelevant to a user. From this we can estimate the probability that any
document will be relevant to a particular user, and the probability that a particular
facet-value pair xk will be contained in a relevant or a nonrelevant document. This
tuple is the user relevance model and is represented as:

θu = {P(rel | u),P(xk | rel,u)P(xk | non,u)} (1.7)

where k = 1, ...,K.
These individual probabilities can be estimated from training data. For example,

assume for a particular user u, there exists a set of training data Du = 〈Du,rel ,Du,non〉,
where Du,rel is the set of documents marked by u as being relevant, and Du,non are the
set of documents marked as nonrelevant. If the facet type is free text, the maximum
likelihood estimation of θu is:

P(rel | u) =
|Du,rel |
|Du|

(1.8)

P(xk | rel,u) =
1

|Du,rel | ∑
d∈Du,rel

Ixk∈d (1.9)
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P(xk | non,u) =
1

|Du,non| ∑
d∈Du,non

Ixk∈d (1.10)

This setup is very similar to the commonly used relevance language model in
information retrieval [95]. We leave it as an exercise for the readers to derive the
estimation for other facet types.

As stated in section 1.6.1, it may take a while before enough user specific feed-
back information is gathered from a particular user, thus user could suffer from the
so called “cold start” problem. To handle this problem and get a level of acceptable
performance from the very beginning, a hierarchical Bayesian model is used and
found success in user modeling experiments [94, 99, 97]. In this model, each indi-
vidual user model is considered as a draw from a prior distribution that is common
to all users. By using common prior, gaps in a particular user’s model can be filled
in by using information from the community of users. To applying the hierarchical
Bayesian modeling approach for personalized faceted search, each distribution for
each facet needs a separate prior that is estimated from the training data of all users
in the system. Table 1.1 suggests different priors for different facet types.

Based on document models and user models described above, one can generate
faceted search interface in various ways. For example, we can rank the facet-value
pair based on Equation .

1.6.7 An Ontological Approach

An alternative approach to personalize faceted search is using ontology created man-
ually or automatically. Tvarožek and Bieliková [86] use the distance between val-
ues in a hierarchical ontology to measure similarity, and thus relevance to users.
In cases where an explicit ontology does not exist, one can be automatically con-
structed [80, 13, 91, 84].

The technique works as follows: Let Lu(x) be the relevance of a facet x to user
u∈U as computed by the ontological similarity of the facet and the user model [7].
In this case, the ontological similarity is the reciprocal of the maximum number of
links needed to transverse from each value being compared, to a value common to
both.

Each user model is then compared to the other users in the system, in order to
calculate the cross relevance of a facet x to a user. This value, Cu(x), is the average
of the relevance of the facet to each user, weighted by the similarity of the each user
v to the current user u.

Cu(x) = ∑v∈U similarity(u,v)Lv(x)
|U |

(1.11)

The global relevance of a facet, G(x), is calculated as the average relevance of the
facet to every user. The static relevance of facet to a user is a weighted combination
of the cross relevance and the global relevance.
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In order to make recommendation to a user regarding a specific query, the tem-
porary in-session relevance of each facet x to the current user u is introduced. This
value, Tu(x), is simply the fraction of query refinements (i.e. clicks) that utilize a
facet x of all refinements in the current search session. This number is combined
with the static relevance of the facet to determine the current dynamic relevance of
a facet to the user. Values from facets with the highest dynamic relevance are then
suggested to the user for query refinement. Evaluated with the Factic system, the
ontology based approach reduce the number actions required for users to find their
documents of interest when compared to an un-personalized baseline [87] .

1.6.8 Evaluation Regime

Considering various personalized faceted search techniques, which one works better
on a particular task? To compare personalization methods, an evaluation metric is
needed. Traditionally user studies have been used to determine satisfaction with dif-
ferent user interfaces. While undeniably useful, user studies have some drawbacks.
First, they are expensive to hold. A number of users must be gathered and then
tested on the proposed system. This takes a nontrivial amount of time for even user
studies with a moderate number of subjects. User studies also problematic when be-
ing used to evaluate personalized systems, as the test subjects may not interact with
the system long enough for a sufficient user profile to be learned. This can lead to
inconclusive, or possibly even contradictory results.

Koren et al. [53] proposed a complementary inexpensive evaluation metric based
on calculating the expected utility to a user of a faceted search interface, through the
use of simulated user interactions. This method allows designers to quickly com-
pare various algorithms and determine which algorithms are the most promising.
By using this method, or a similar one, designers can conduct fewer user studies by
only submitting the top performing algorithms for an in depth user study. A similar
approach has seen seen success when evaluating spoken dialog systems [55, 32].

The evaluation system works as follows: Assume that the goal of the search in-
terface is to enable users to find their documents of interest with the least amount
of effort. In order to measure this effort, the actions that a user can perform when
interacting with the system are identified and the system is rewarded or penalized de-
pending on what action is performed. A series of user interactions are simulated us-
ing a combination of real-user feedback and heuristics. The interface is then scored
according to the expected total reward for an interaction session.

Given S user interaction sessions, the empirical utility of the interface can be
estimated easily:

U =
S

∑
s

Ts

∑
t

R(qs,t+1,as,t ,qs,t) (1.12)
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Let us now define the reward function. As stated earlier, we assume that the goal
of the interface is to allow users with the least amount of effort on their part. In order
to measure this effort, the designer must identify which actions a user can perform
at each step of the interaction. Koren et al. identified eight actions common to many
personalized faceted search interfaces, along with the rewards the system receives
for each. These actions are listed in table 1.2.

Table 1.2 User Actions and Rewards
Action Reward

Select Facet-Value Pair negative
De-select User Selected Facet-Value Pair zero

De-select System Selected Facet-Value Pair negative
View More Facet-Value Pairs negative
Mark Document as Relevant positive

Mark Document as Non-relevant negative
View More Documents negative

End Session zero

Calculating P(a | qt ,u,D) is much more problematic, since its functional form is
unknown. Instead of employing real users through a user study, actions are simu-
lated based on certain assumptions about how real users interact with faceted search
systems. Without loss of generality, it is assumed that each simulated user is search-
ing for exactly one target document and that the simulated user can recognize the
document and the facet-value pairs that are indicative of that document. At each step
of the search session, the simulated user scans the top ranked documents that match
current query looking for the target document. If it is found, then it is selected and
the session ends. If the target document is not found, the simulated user removes
any facet-value pairs that are contained in the current query that do not match the
target document. Once the query is cleaned of incorrect terms, the simulated user
scans the list of presented facet-value pairs. A pair is selected by some method for
inclusion in the query from the set of pairs that match the target document. If none
of the suggested facet-value pairs match the target document, then a facet is chosen
at random and all of its values are examined until a matching facet-value pair is
found for inclusion. If no matching value can be found for any facet, then the sim-
ulated user scans through the complete list of returned documents until the target
document is found.

When there are multiple matching facet-value pairs, deciding which one to in-
clude in the query can greatly impact how much additional searching is required to
find the target document. Koren et al. suggested four possible selection methods.
Stochastic users simply select one of the matching facet-value pairs randomly from
a uniform distribution. First-match users scan the list from top to bottom, and se-
lect the first matching facet-value pair found. This heuristic is modeled after how
users select matching documents from a ranked list of results. Myopic users select
the matching facet-value pair that is contained in the least number of documents.
With this method assumes that users are trying to reduce the search space as quickly
as possible. Optimal users that perform actions that directly optimize the utility of
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interface were also identified, but not examined in detail due to the complexity in
searching for the optimal policy for the user to execute.

Although the simulated users differ from real users, the evaluation methodology
does provide insight into understanding how various faceted interface design algo-
rithms perform [53]. This evaluation method is neither better or worse than user
studies. Instead, the approach serves to complement user studies by being cheap,
repeatable, and controllable.

1.6.9 Conclusions

This section presented the problem of determining which facet-value pairs the sys-
tem interface should provide to a user for query refinement was. In particular, we
focus on personalized faceted search techniques that try to find facet-value pairs
most useful to individual users. We introduced three major approaches, collabora-
tive filtering based faceted search personalization, content based personalization,
and ontology based personalization. We present a utility based evaluation frame-
work for various faceted search interfaces, and the general idea is that the best in-
terface should minimize the number/cost of interactions needed to find a document
of interest.

1.7 Summary

This chapter demonstrated the breadth of design challenges and solutions in the
realm of faceted search and dynamic taxonomies. Although there are some estab-
lished standards in the user interface design for applications in this area, especially
the emerging advanced navigation modes lack established, documented and usabil-
ity evaluated approaches. We hope that future research will shed some light on the
efficiency and efficacy of these novel approaches, in order to facilitate both design
and usage of applications for faceted search and dynamic taxonomies.





References

1. Mani Abrol, Neil Latarche, Uma Mahadevan, Jianchang Mao, Rajat Mukherjee, Prabhakar
Raghavan, Michel Tourn, John Wang, and Grace Zang. Navigating large-scale semi-structured
data in business portals. In Proceedings of the 27th VLDB Conference, pages 663–666, 2001.

2. E. Adar, D.R. Karger, and L. Stein. Haystack: Per-user information environments. In Confer-
ence on Information and Knowledge Management, 1999.

3. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: a
survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 17:734–749, 2005.

4. Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web search ranking by incor-
porating user behavior. In SIGIR ’06: Proceedings of the Annual international ACM SIGIR
conference on Research and development in information retrieval, 2006.

5. J. F. Allen, C. I. Guinn, and E. Horvitz. Mixed-Initiative Interaction. IEEE Intelligent Systems,
Vol. 14(5):pp. 14–23, 1999.

6. G. Amato and C. Meghini. Faceted content-based image retrieval. In G.M. Sacco, editor,
DEXA Work. Dynamic Taxonomies and Faceted Search (FIND), pages 402–406. IEEE Com-
puter Society, 2008.

7. Anton Andrejko, Michal Barla, and Michal Tvarožek. Comparting ontological concepts to
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